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Abstract
The coherent tunnelling spin current in the bilayer system with spin–orbit coupling is
investigated. Based on the continuity-like equations, we discuss the definition of the tunnelling
current and show that the overlaps between wavefunctions for different layers contribute to the
tunnelling current. We study the linear response of the tunnelling spin current to an in-plane
electric field in the presence of nonmagnetic impurities. The tunnelling spin conductivity we
obtained presents a feature asymmetrical with respect to the gate voltage when the strengths of
impurity potentials are different in each layer.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The study of the tunnelling process has a long history
ever since the foundation of quantum mechanics and
there arise many applicable effects. As an example,
the coherent tunnelling of Cooper pairs between weakly
connected superconductors, known as the Josephson effect,
has been employed in the design of superconductor circuits
that are prospective in quantum computation and quantum
information [1, 2]. For future information processing and
storage technologies, the emerging field of spintronics [3–5]
aims mainly at coherent manipulation of spin degree of
freedom and controllable spin transport in solid states. Owning
to these anticipations, some attention has been absorbed in
the study of the coherent spin tunnelling process either in
conventional Josephson junctions [6–8] or in the ferromagnetic
tunnel junctions [9]. However, as we are aware, the junction
constituted by a bilayer of two-dimensional electron gases
has not been considered yet although there exist versatile
features in such systems. For example, a resonantly enhanced
tunnelling was reported in the bilayer quantum Hall system
when the layers are sufficiently close to each other [10].
Moreover, the spin Hall conductivity, which vanishes for
arbitrarily small concentrations of nonmagnetic impurities in
a monolayer, was shown to have a magnification effect in
the bilayer electron system [11]. We therefore investigate the
coherent tunnelling spin current (TSC) in the bilayer system
with spin–orbit coupling in this paper. In our study, the

tunnelling is included in the unperturbed Hamiltonian, unlike
the conventional tunnelling Hamiltonian approach [12] where
it is treated as a perturbation.

The present paper is organized as follows. In section 2, we
revisit the definition of the tunnelling charge current and then
give the definition of the TSC with the help of the continuity-
like equations in bilayer systems. In section 3, we consider a
twin-layer system in which the strengths of impurity potentials
in each layer are identical. We study the linear response of
the TSC to the in-plane electric field and obtain the tunnelling
spin conductivity which exhibits sharp cusps. In section 4,
the influence on the tunnelling spin conductivity caused by
the variation of the strengths of impurity potentials in different
layers is considered. The expression of the Green’s function
is extended so as to incorporate such influences. We find that
the difference between the strengths of impurity potentials in
the two layers gives rise to the asymmetrical feature of the
tunnelling spin current with respect to the gate voltage. Finally,
a brief summary is given in section 5 and some concrete
expressions are written out in the appendix.

2. Definition of coherent tunnelling spin current

In order to properly define the coherent TSC, let us first recall
the definition of the tunnelling charge current across a junction.
Such a current is generated by electrons tunnelling from one
side of the junction to the other side due to the imbalance of
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the chemical potentials produced by an applied gate voltage
V . The bilayer system considered in this paper resembles the
tunnel junction and its Hamiltonian is given by

H = p2

2m
I + eV τz + βτx, (1)

where β is the tunnelling strength, and I and τa (a =
x, y, z) denote the unit matrix and Pauli matrices in the layer
representation, respectively. The wavefunction of the system is
expressed as � = (ψf, ψb)

T. From the Schrödinger equation,
we can obtain the continuity-like equations for the densities
ρ� = ψ

†
� ψ�, namely

∂ρf

∂ t
+ ∂ jfi
∂xi

= iβ

h̄
(ψ

†
bψf − h.c.),

∂ρb

∂ t
+ ∂ jbi

∂xi
= iβ

h̄
(ψ

†
f ψb − h.c.),

(2)

with j�i = − ih̄
2m (ψ

†
�
∂
∂xi
ψ� − h.c.) and h.c. refers to the

Hermitian conjugation since ψ� should be in a two-component
form ψ� = (ψ�↑, ψ�↓)T if the spin degree of freedom is taken
into account. Here the subscripts i represent the components
of a quantity in the spatial space and � label the quantities of
the front layer with � = f or the back layer with � = b. The
nonvanishing terms on the right-hand sides of equations (2),
which are caused by the tunnelling between layers, indicate
the overlap between the wavefunctions for different layers.

Integrating the first equation of equations (2) over the
domain of the front layer Df, we have

IT = −dNf

dt
=

∫
jfz dA − iβ

h̄

∫
Df

(ψ
†
bψf − h.c.) dV , (3)

where A denotes the area of the layer and Nf = ∫
Df
ρf dV

is the electron number in the front layer. Here we focus
on the tunnelling-relevant direction, say the z direction, and
assume that there is no in-plane current flowing out of each
layer. Equation (3) demonstrates that the rate of change of the
electron number in the front layer, defined as the tunnelling
current, contains not only the conventional contribution∫

jfz dA, but also the overlap between the wavefunctions for
different layers. The orthogonality and completeness of the
states on each side of the junction were discussed [13–15].
Then equation (3) manifests, from another point of view, why
the tunnelling current is conventionally evaluated by the rate of
change of the electron number on one side of a junction.

Now we are in the position to consider the TSC in the
bilayer system with spin–orbit coupling. A natural definition
of the TSC density in a system should be the rate of change
of the spin density �S� = ψ

†
� �sψ� in the � layer where �s =

h̄
2 �σ are the spin operators. Here and hereafter the overhead
arrow represents that the quantity is a vector in the spin space.
The continuity-like equations for the spin density �S� in the
system with SU(2) gauge potentials �A0 and �Ai [16] have been

obtained in our previous paper [11], which are(
∂

∂ t
− h̄ �Af0×

)
�Sf +

(
∂

∂xi
+ h̄ �Afi×

)
�Jfi

= iβ

h̄
(ψ

†
b �sψf − h.c.),

(
∂

∂ t
− h̄ �Ab0×

)
�Sb +

(
∂

∂xi
+ h̄ �Abi×

)
�Jbi

= iβ

h̄
(ψ

†
f �sψb − h.c.),

(4)

with �J�i = Re(ψ†
�

1
2 {vi , �s}ψ�), where vi is the velocity operator

and the curly brackets denote the anti-commutation relation. In
this paper, we consider the system without structure inversion
symmetry and the resulting spin–orbit coupling is of Rashba
type. In a single-layer electron gas it is given by HR =
α(kyσ

x − kxσ
y) [5]. Considering the strengths of the Rashba-

type spin–orbit coupling may be different in the two layers, we
employ α1 and α2 to denote the strengths in the front and back
layers, respectively. Thus the Rashba-type spin–orbit coupling
in a bilayer electron system is written as

HR =
(
α1 0
0 α2

)
⊗ (kyσ

x − kxσ
y) (5)

and the SU(2) gauge potentials are given by �Afx =
2m
h̄2 (0, α1 , 0), �Afy = − 2m

h̄2 (α1, 0 , 0), �Abx = 2m
h̄2 (0, α2 , 0),

�Aby = − 2m
h̄2 (α2, 0 , 0) and �Afz = �Af0 = �Abz = �Ab0 = 0.

Since the tunnelling being considered is spin-independent,
only a gate voltage cannot induce a nonvanishing TSC. As we
know, an in-plane electric field is applied to drive the spin Hall
current and the basic relation between the spin current J a

i and
the electric field is given by [17]

J a
i = εai jσs E j , (6)

where σs is the spin Hall conductivity and εai j the totally
antisymmetric tensor. The indices i and a both run from 1 to
3 where i refers to the flowing direction of the spin current
while a indicates the direction of the spin polarization. It
demonstrates that the flow direction and the spin-polarization
direction of the current as well as the direction of the electric
field are always perpendicular to each other. Since the
tunnelling is with respect to the z direction and the in-
plane electric field is along the x direction, we focus on the
component of the TSC polarized in the y direction. From
equation (4), we have

−∂Sy
f

∂ t
=

(
∂

∂z
+ h̄Ax

fy

)
J y

fz − iβ

h̄
(ψ

†
b s yψf − h.c.), (7)

where we have taken that the nonvanishing components of the
spin current are J y

fz = −J z
fy as the electric field is along the x

direction. The last term on the right-hand side of equation (7)
can be regarded as the overlap between the eigenfunctions
of sy . Unlike the case of the tunnelling charge current, the
contributions of the states with spin parallel and anti-parallel
to the y axis have opposite signs. The covariant derivative
∂
∂z + h̄Ax

fy is in place of the conventional derivative, which
indicates that the spin precession due to the spin–orbit coupling
leads to an additional contribution to the TSC.
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3. Tunnelling spin current in twin-layer system

In section 2, the definition of the TSC in bilayer
systems with Rashba-type spin–orbit coupling in each layer
has been discussed by taking account of the electrons’
coherent tunnelling. Unlike the tunnelling Hamiltonian
approach [12, 18] in the study of the tunnelling charge
current, here we take the tunnelling term in the unperturbed
Hamiltonian. Since the tunnelling strength is not necessarily
weak in our approach, we are able to obtain more information
beyond the perturbation approach. In the present approach,
the unperturbed Hamiltonian in the second quantization form
is given by

H =
∑

k

C†
k

{( h̄2k2

2m + eV β

β h̄2k2

2m − eV

)
⊗ I

+
(
α+ I + α−τz

)
⊗ (kyσ

x − kxσ
y)

}
Ck + V̂im. (8)

We have adopted the notations α+ = (α1 + α2)/2, α− =
(α1 − α2)/2 and C†

k ≡ (c†
k,f↑, c†

k,f↓, c†
k,b↑, c†

k,b↓) with c†
k,�↑(↓)

being the creation operator for a spin-up (spin-down) electron
in the � layer. Throughout the paper, the boldface of
a quantity manifests that it is a two-dimensional vector,
e.g. k = (kx, ky). The last term in the Hamiltonian
characterizes the interaction between electrons and impurities.
The influence of nonmagnetic [19–22] and magnetic [23, 24]
impurities on the spin Hall conductivity were discussed
in monolayer systems. For simplicity, we consider the
nonmagnetic impurities in both layers are all alike in this
section. Thus the potential energy of impurities is given by
V̂im = u

∑
i δ(r − Ri) with u being the strength and Ri

the position of the impurity. Here we assume the interaction
strength u is weak so that the Born approximation [25] is
applicable.

In the chiral representation, the Hamiltonian without the
impurity term is diagonalized by a unitary matrix U with
eigenenergies

ε1 = εk − α+k − λ12, ε2 = εk − α+k + λ12,

ε3 = εk + α+k − λ34, ε4 = εk + α+k + λ34,

with εk = h̄2k2

2m , λ12 = √
(eV − α−k)2 + β2 and λ34 =√

(eV + α−k)2 + β2. Hereafter, we set h̄ = 1 for
simplicity. The free retarded Green’s function in this chiral
representation is given by GR

0(ch)(k, ω) = diag((ω − ε1 +
iη)−1, (ω − ε2 + iη)−1, (ω − ε3 + iη)−1, (ω − ε4 + iη)−1)

with iη being an infinitesimal quantity. Also the Green’s
function in the original representation is related to that in the
chiral representation by the unitary transformation, namely
G(k, ω) = U(k)G(ch)(k, ω)U †(k).

As a macroscopic quantity, the TSC is expected not to
be affected by the details of impurity location {Ri}. We
assume there is no correlation between impurities and employ
the impurity averaging techniques and the diagrammatic
method [25, 26]. A physical quantity Q for the whole
system is obtained by taking the average over impurities’
configuration, namely Q = 〈Q({Ri })〉im = �i

∫ dRi
A Q({Ri})

with A being the size of the system. In the Born approximation,
the averaged retarded Green’s function GR(k, ω) satisfies the
Dyson equation

GR(k, ω) = GR
0 (k, ω)+ GR

0 (k, ω)

×
(

unim + u2nim

A

∑
q

GR(q, ω)
)

GR(k, ω), (9)

where nim stands for the impurity concentration. The
above equation has a self-consistent solution, GR

(ch)(k, ω) =
diag(g1, g2, g3, g4) with g j = (ω− ε j − unim + i

2τ )
−1, where

the subscript j runs from 1 to 4. Here τ = (2πu2nim NF)
−1 is

the momentum relaxation time and NF is the density of states
at the Fermi surface. Note that the averaged retarded Green’s
function is diagonal in the chiral representation. We will see
in the next section that the difference between the strengths of
impurity potentials in two layers results in the emergence of
off-diagonal elements in GR

(ch).
The TSC defined in the previous section can be expressed

in a symmetric form with respect to both layers, namely the
difference between the rate of change of the spin operator in
each layer:

J y
z = −1

2

〈
dŜ y

−
dt

〉
= −1

2

〈
d

dt

∑
k

C†
k(τz ⊗ sy)Ck

〉
, (10)

where Ŝ y
− = Ŝ y

f − Ŝ y
b denotes the difference between the y

component of spin operators Ŝ y
� = ∑

k[(c†
k,�↑, c†

k,�↓)s
y(ck,�↑,

ck,�↓)T] in the two layers. It is written in a compact form in
equation (10) where τ z is in the layer representation. The linear
response of the TSC to the external in-plane electric field, the
tunnelling spin conductivity σ y , can be obtained by using the
Kubo formula

σ y(ω) = 1

2πωA

∫
dω1Tr

{
nF(ω1)

× [GR(ω1)− GA(ω1)] ĵ y
z GR(ω + ω1) ĵe + nF(ω + ω1)

× [GR(ω + ω1)− GA(ω + ω1)] ĵeGA(ω1) ĵ y
z

}
, (11)

where ĵ y
z = 1

2 [(α+τz +α− I )⊗kyσz −βτy ⊗σy] and Tr refers to
the trace taken over the spin indices as well as the summation
over the momentum. GA is the advanced Green’s function, nF

is the Fermi distribution function and ĵe = ev̂x is the charge
current operator.

In the uncrossing approximation [21], the dc tunnelling
spin conductivity σ y at zero temperature is calculated as
the sum of contributions of the one-loop diagram σ

y
0 and

a series of ladder diagrams σ
y

L . The former is given

by σ
y

0 = − 1
2π A Tr(GR(k) ĵe(k)GA(k) ĵ y

z (k)) and denoted
diagrammatically as

3
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Figure 1. σ y as a function of β. The parameters are given by V = 0,
α+ = 5.5 × 10−14 eV m, α− = 0.45 × 10−14 eV m, μ = 0.1 eV,
τ = 660 fs and the effective mass m = 0.065 m0 as in GaAs with
m0 being the mass of the free electron.

A direct calculation leads to

σ
y

0 = −2α−
∑

k

sin2 ϕ

× Im
[ β2

λ12
a1g2 + β2

λ34
a3g4 + α+k(a1 + a2)(g3 + g4)

+ W−+(a1 − a2)(g3 + g4)+ W+−(a1 + a2)(g3 − g4)

+ W−−(a1 − a2)(g3 − g4)
]
, (12)

where the simplified notations W−+ = 1
2λ12
(β2+(α2++α2−)k2−

α2++α2−
α− keV ), W+− = − 1

2λ34
(β2 + (α2+ + α2−)k2 + α2++α2−

α− keV )

and W−− = α+k
λ12λ34

(e2V 2 − β2 − α2−k2) as well as the polar
coordinates k = (k cos ϕ, k sinϕ) are adopted. ai are the
matrix elements of the advanced Green’s function in the chiral
representation.

In the limit of a large Fermi circle, μ 	 �i j , 1/τ with
�i j = εi − ε j , the vertex correction to the conductivity

σ
y

L is dominated by the terms with one advanced and one
retarded Green’s function [21], which can be expressed
diagrammatically as

The sum of vertex corrections to ĵ y
z can be defined as a

new vertex J y , namely

Therefore σ y
L can be written in a more compact form, i.e.

σ
y

L = −1

2π A
Tr(GR(k) ĵe(k)GA(k)J y)

= − 1
2 Im

[∑
k

cos2 ϕ
( 4∑

i, j=1

Qi j ai g j

+
∑

s,s ′=±1

Qss ′(a1 + s a2)(g3 + s′g4)
)]
, (13)

0

1

2

3

4

5

gate voltage (mV)

σy
(–

10
4

e/
8π

)

(a) (b)

α
 

= 5*10–14 eV m

α
 

= 1.5*10–14 eV m

α
 

= 0.45*10–14 eV m

–0.08 –0.04 0 0.04 0.08 –0.08 –0.04 0 0.04 0.08

–

–

–

Figure 2. Tunnelling spin conductivities σ y are plotted as functions
of the gate voltage V with different values of α− given in the legend.
The tunnelling strength is β = 5 × 10−6 eV, the momentum
relaxation times are τ = 660 fs in panel (a) and τ = 66 fs in panel
(b) while the other parameters are the same as those in figure 1.

where the expressions for Qi j and Qss ′ are given in the
appendix. The momentum-independent J y can be obtained
from the transfer matrix equation:

J y = u2nim

A

∑
q

GA(q)( ĵ y
z (q)+ J y)GR(q). (14)

The summation over the momentum can be evaluated by taking
it as an integration in the limit of large Fermi circle. Then we
obtain the tunnelling spin conductivity σ y which is plotted as a
function of β in figure 1. Here we consider the GaAs/AlGaAs
double quantum well heterostructures [10]. We can see that the
TSC vanishes when the tunnelling is absent.

We plot σ y as a function of the applied gate voltage V
with different α− and momentum relaxation time in figure 2.
It is shown that a peak in σ y appears around V = 0 when
α− is small and this peak splits as α− increases. These peaks
manifest the resonance of the TSC. An intuitive interpretation
is that the degeneracy of energies in different layers leads to
a greatly enhanced tunnelling probability, as in the resonant
tunnelling diode. We focus on the Fermi surface from
which the main contribution to the current arises. The gate
voltage induces a potential difference 2 eV between layers
and the spin–orbit coupling causes an energy splitting between
different spin states which equals �f = α1kF in the front layer
or �b = α2kF in the back layer with kF being the Fermi
momentum, as shown in figure 3.

When α− is small, �f � �b and the energies degenerate
around V = 0 where there arises a peak in σ y . For large α−,
we first consider V > 0 and the energies degenerate when (a)
eV −�f = −eV +�b or (b) eV −�f = −eV −�b. However,
only in situation (b) could the resonant tunnelling occur. It
is due to the fact that the tunnelling in the system is spin-
independent and the tunnelling between different spin states
is forbidden. Thus the peak shows up at the degenerate point
where eV = α−kF, as shown in figure 2 (kF = 4 × 108 m−1

with the chosen parameters). Figures 3(c) and (d) show the two
situations of energy degeneracy for V < 0. Similarly, only in
situation (d) could a resonant TSC arise.

4
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Figure 3. Energies of different spin states in the front (blue) and back (red) layers at the Fermi surface with V > 0 in panels (a) and (b) and
V < 0 in (c) and (d). A resonance TSC shows up when the energies of states with the same spin direction in different layers degenerate.

The double-peak structure of σ y in figure 2 demonstrates
that the resonant TSC at V > 0 has the same sign as that at
V < 0. It can be illustrated by a simple picture if we recall the
definition of the TSC, i.e. the difference between the changing
rates of the spin densities in different layers. Semiclassically,

it can be expressed as − 1
2 [( dn↑

f
dt − dn↓

f
dt ) − (

dn↑
b

dt − dn↓
b

dt )] where

n↑(↓)
� denotes the density of spin-up (spin-down) electrons in

the � layer. When V > 0, the potential energy of electrons
in the front layer is higher and electrons tend to tunnel to

the back layer, leading to dn↑
f

dt ,
dn↓

f
dt < 0 and dn↑

b
dt ,

dn↓
b

dt > 0.
Furthermore, as presented in figure 3(b), the tunnelling
probability of electrons with spin-down is much larger than

that of electrons with spin up. Hence | dn↓
�

dt | > | dn↑
�

dt | and the
sign of the TSC is minus. The same result can be obtained for
V < 0.

As expected, the nonmagnetic impurities tend to suppress
the TSC, as indicated in figure 2(b) where the momentum
relaxation time is a tenth part of that in figure 2(a). Figure 4
shows the contour-plot projections of σ y which are plotted
as a function of both the gate voltage and α−. These figures
indicate that the resonant peaks in σ y begin to converge as α−
decreases.

4. Tunnelling spin current asymmetrical to
gate voltage

In realistic samples, the strengths of impurity potentials
in those two layers may not happen to be identical.
We thus introduce uf and ub to denote the strengths of
impurity potentials in the front and back layers, respectively.
Accordingly, the interaction between electrons and impurities
is given by

V̂im =
∑

i

δ(r − Ri)

(
uf 0
0 ub

)
⊗ I. (15)

Note that the unit matrix in the layer space is no longer
appropriate in the present case. This implies that in the
Feynman diagram the line which refers to the impurity

Figure 4. Contour plot of σ y which is a function of both the gate
voltage and α−. The colour bar represents the value of σ y in units of
104e/8π .

potential represents a matrix diag(uf/A, ub/A) rather than a
number u/A. For example, the first-order Feynman diagram
in the expansion of the impurity-averaged Green’s function is
given by

= N G0(k)
(

uf
A 0
0 ub

A

)
G0(k)

where the momentum is conserved at the vertex and the vector
refers to the free Green’s function. Accordingly, the Dyson
equation for GR is then written as

GR(k, ω) = GR
0 (k, ω)+ GR

0 (k, ω)N
[ (

uf
A 0
0 ub

A

)

+
∑

q

(
uf
A 0
0 ub

A

)
GR(q, ω)

(
uf
A 0
0 ub

A

)]
GR(k, ω). (16)

We obtain a self-consistent solution for the above equation:

GR
(ch) =

⎛
⎜⎝

R11 R+ 0 0
R+ R22 0 0
0 0 R33 R−
0 0 R− R44

⎞
⎟⎠ , (17)

5
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with nonvanishing off-diagonal elements even in the chiral
representation. The explicit expressions for those matrix
elements are given in the appendix. The momentum relaxation
time for the front and back layers are simply given by τf =
(2πu2

f nim NF)
−1 and τb = (2πu2

bnim NF)
−1, respectively.

The difference between the strengths of impurity
potentials in two layers not only modifies the diagonal
elements of GR

(ch) but also inevitably requires the appearance
of off-diagonal elements. Now the contributions to σ y by
the diagonal elements can be directly obtained by replacing
gi and ai , respectively, by Rii and Aii in equation (12)
and equation (13). Here Aii = R∗

ii denote the diagonal
elements of the averaged advanced Green’s function in the
chiral representation. The contributions to σ y

0 given by the off-
diagonal elements are

σ
y

0,off = −2β
∑

k

sin2 ϕIm ×
[(

R+
eVα− + α2+k

λ12

+ R−
α−(eV + α−k)

λ34

)
(A33 + A44)

+
(

R+
k − α+m

m
− R−

α+λ12

λ34

)
(A11 − A22)

−
(

R+
α+λ34

λ12
+ R−

k + α+m

m

)
(A33 − A44)

+
(

R+
α−(eV − α−k)

λ12
+ R−

eVα− − α2+k

λ34

)

× (A11 + A22)

]
. (18)

The transfer matrix equation for the vertex J y is also modified
as

J y = N
∑

q

(
uf
A 0
0 ub

A

)
GA(q)( ĵ y

z (q)+ J y)

× GR(q)
(

uf
A 0
0 ub

A

)
. (19)

And the contributions to σ y
L by the off-diagonal elements is

σ
y
L ,off = −Im

[∑
k

∑
s,s ′=+,−

cos2 ϕ

(
4∑

i=1

Xis As Rii + Xss ′ As Rs ′

)]
,

(20)
with As = R∗

s and the coefficients Xis and Xss ′ are written out
in the appendix.

The influence of the difference of impurity potentials on
the tunnelling spin conductivity can be observed in figure 5.
Here we introduce the difference in relaxation times �τ =
(τf − τb)/τb which is taken to be 8 × 10−5 and 5 × 10−4

in figures 5(a) and (b), respectively. As the difference �τ
increases, the resonant peak located at V > 0 tends to be
suppressed and finally it becomes a valley.

The impurity potentials can be viewed as a modification
to the potential energy of electrons. As we have employed the
impurity averaging techniques, the effective potential energies
of electrons in the front and back layers are eV + uf and
−eV + ub, respectively. Also the potential difference between
layers is given by 2eV + (uf − ub).

Figure 5. σ y as a function of V and α−. The relaxation-time
differences are�τ = 8 × 10−5 in panel (a) and �τ = 5 × 10−4 in
panel (b) with τb = 660 fs.

When V > 0, the potential energy of the front layer is
higher. Increasing�τ reduces the potential difference between
layers since τ� ∝ u−2

� and 0 < uf < ub. Finally the
potential energy of the back layer becomes higher and electrons
are inclined to tunnel from the back layer to the front layer.
However, as the gate voltage V > 0, electrons in the spin-
down states still have a larger tunnelling possibility. Hence the
sign of the resulting resonant TSC is reversed and the peak in
σ y becomes a valley. When V < 0, electrons in the back layer
are of higher potential energy. Increasing �τ will not change
this situation: it just increases the potential difference between
layers. Therefore the resonant TSC still keeps its minus sign.

Figure 5 indicates that the variation of the strengths of
impurity potentials between layers leads to the asymmetric
dependence of the TSC on the gate voltage when the in-plane
driven electric field is fixed. This unilateral conduction feature
makes the bilayer system with different strengths of impurity
potentials a candidate for the realization of a spin diode.

5. Summary

We have studied the coherent TSC in the bilayer system
with spin–orbit coupling. We first revisited the definition of
the tunnelling charge current with the help of continuity-like
equations in the bilayer system since the tunnelling between
layers causes the nonconservation of the density in each layer.
In additional to the conventional contribution, the tunnelling
current contains those related to the overlap of wavefunctions
for different layers. This is intuitional for us to define
the coherent TSC. We showed that the contributions of the
wavefunction overlaps for states with spin parallel and anti-
parallel to a reference axis have opposite signs. Unlike the
conventional tunnelling Hamiltonian approach, the tunnelling
strength in our study is not necessarily weak since it is treated
as a part of the unperturbed Hamiltonian. In the light that
only a gate voltage cannot induce a nonvanishing result, we
studied TSC in response to an in-plane electric field. The
spin conductivity was calculated in terms of the Kubo formula
by taking account of nonmagnetic impurities. We firstly
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investigated twin-layer systems and then considered the effect
caused by the difference between the strengths of impurity
potentials in different layers. Meanwhile, we developed
the techniques dealing with the impurity-averaged Green’s
function in the bilayer system. We showed that there must exist
nonvanishing off-diagonal elements in the averaged Green’s
function even in the chiral representation if the strengths of
impurity potentials in two layers is different. Sharp cusps in
the tunnelling spin conductivity appear near the null voltage
and are suppressed by the impurities. We found that if the
strength of impurity potential in one layer is different from that
in the other layer, the TSC exhibits the asymmetrical feature
with respect to the gate voltage. This reveals that the spin
diode can also be realized in the bilayer system with different
strengths of impurity potentials in different layers.
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Appendix. Expressions for some coefficients and the
matrices

The concrete expressions for the matrix elements of the
averaged retarded Green’s function in equation (17) is given
by

R11 =
{
ω − ε2 −w+ − eV − α−k

λ12
w−

}

× {(ω − ε1)(ω − ε2)−w+(2ω − ε1 − ε2)

+ (ω+ + ω−)(ω+ − ω−)− 2ω−(eV − α−k)}−1,

R22 =
{
ω − ε1 −w+ + eV − α−k

λ12
w−

}

× {(ω − ε1)(ω − ε2)−w+(2ω − ε1 − ε2)

+ (ω+ + ω−)(ω+ − ω−)− 2ω−(eV − α−k)}−1,

R33 =
{
ω − ε4 −w+ − eV + α−k

λ34
w−

}

× {(ω − ε3)(ω − ε4)−w+(2ω − ε3 − ε4)

+ (ω+ + ω−)(ω+ − ω−)− 2ω−(eV + α−k)}−1,

R44 =
{
ω − ε3 −w+ + eV + α−k

λ34
w−

}

× {(ω − ε3)(ω − ε4)−w+(2ω − ε3 − ε4)

+ (ω+ + ω−)(ω+ − ω−)− 2ω−(eV + α−k)}−1,

R+ =
{
− β

λ12
w−

}

× {(ω − ε1)(ω − ε2)−w+(2ω − ε1 − ε2)

+ (ω+ + ω−)(ω+ − ω−)− 2ω−(eV − α−k)}−1,

R− =
{
− β

λ34
w−

}

× {(ω − ε3)(ω − ε4)−w+(2ω − ε3 − ε4)

+ (ω+ + ω−)(ω+ − ω−)− 2ω−(eV + α−k)}−1,

(A.1)

where we have introduced w± = 1
2 ((uf ± ub)nim − i

τ± ) and

τ± = 1
2 (τf − τb).

The nonzero coefficients Qi j in equation (13) are
explicitly written as

Q11 =
(

k

m
− α2 + α− D−

12

)

×
(

D−
12 J12 − D+

12 J34 + β

λ12
(J14 + J32)

)
,

Q22 = −
(

k

m
− α1 − α− D−

12

)

×
(

D+
12 J12 − D−

12 J34 + β

λ12
(J14 + J32)

)
,

Q33 = −
(

k

m
+ α2 − α− D−

34

)

×
(

D+
34 J12 − D−

34 J34 + β

λ34
(J14 + J32)

)
,

Q44 =
(

k

m
+ α1 + α− D−

34

)

×
(

D−
34 J12 − D+

34 J34 + β

λ34
(J14 + J32)

)
,

Q12 = 2α−β
λ12

(
β

λ12
(J12 − J34)− D−

12 J14 − D+
12 J32

)
,

Q34 = 2α−β
λ34

(
β

λ34
(J12 − J34)− D−

34 J14 − D+
34 J32

)
,

(A.2)

with D±
12 = eV −α−k±λ12

λ12
, D±

34 = eV +α−k±λ34

λ34
and

Q+− = eV + α−k

λ34
(α2 J34 − α1 J12)− β

λ34
(α1 J14 + α2 J32),

Q−+ = eV − α−k

λ12
(α2 J34 − α1 J12)− β

λ12
(α2 J14 + α1 J32),

Q++ = (α1 J12 + α2 J34),

Q−− = 1

λ12λ34
[(α1 J12 + α2 J34)

× (e2V 2 − α2
−k2)+ β2(α2 J12 + α1 J34)

+ 2α−β(eV (J14 + J32)− α+k(J14 − J32))],

(A.3)

where J12, J14, J32, J34 are the matrix elements of the vertex
J y which can be obtained by solving equation (14).

The contribution to the σ y
L by the off-diagonal elements

of the Green’s function is given by equation (20) and the
coefficients therein are

X1+ = β

λ12

(
− k

m
+ α2 − 2α− D−

12

)
J12

+ β

λ12

(
k

m
− α1 + 2α− D+

12

)
J34

+
(

k

m
D+

12 + M12 − α− − α2 D+
12

)
J14

+
(

k

m
D−

12 + M12 − α− − α1 D−
12

)
J32,

7
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X2+ = β

λ12

(
− k

m
+ α2 + 2α− D+

12

)
J12

+ β

λ12

(
k

m
− α1 − 2α− D−

12

)
J34

+
(

k

m
D−

12 − M12 + α− − α2 D−
12

)
J14

+
(

k

m
D+

12 − M12 + α− − α1 D+
12

)
J32,

X3+ = β

λ12

(
α2 − 2α−D−

34

)
J12

− α2

λ12

(
eV − α−k + e2V 2 − α2−k2

λ34
+ α1β

2

α2λ12

)
J14

− β

λ12

(
α2 − 2α− (eV − α+k)

λ34

)
J34

− α1

λ34

(
eV − α−k − e2V 2 − α2−k2

λ34
− α2β

2

α1λ34

)
J32,

X4+ = β

λ12

(
α2 + 2α−D+

34

)
J12

− α2

λ12

(
eV − α−k − e2V 2 − α2−k2

λ34
− α1β

2

α2λ12

)
J14

− β

λ12

(
α2 + 2α− (eV − α+k)

λ34

)
J34

− α1

λ34

(
eV − α−k + e2V 2 − α2−k2

λ34
+ α2β

2

α1λ34

)
J32,

X1− = β

λ34

(
α2 − 2α−D−

12

)
J12

− α2

λ34

(
eV + α−k − α1

(
e2V 2 − α2−k2

)
α2λ12

− β2

λ12

)
J14

− β

λ34

(
α2 − 2α− (eV + α+k)

λ12

)
J34

− α1

λ34

(
eV + α−k + α2

(
e2V 2 − α2−k2

)
α1λ12

+ β2

λ12

)
J32,

X2− = β

λ34

(
α2 + 2α−D+

12

)
J12

− α2

λ34

(
eV + α−k + α1

(
e2V 2 − α2−k2

)
α2λ12

+ β2

λ12

)
J14

− β

λ34

(
α2 + 2α− (eV + α+k)

λ12

)
J34

− α1

λ34

(
eV + α−k − α2

(
e2V 2 − α2−k2

)
α1λ12

− β2

λ12

)
J32,

X3− = β

λ34

(
k

m
+ α2 − 2α−D−

34

)
J12

− β

λ34

(
k

m
+ α1 − 2α− D+

34

)
J34

−
(

k

m
D+

34 − M34 + α− + α2 D+
34

)
J14

−
(

k

m
D−

34 − M34 + α− + α1 D−
34

)
J32,

X4− = β

λ34

(
k

m
+ α2 + 2α−D+

34

)
J12

− β

λ34

(
k

m
+ α1 + 2α− D−

34

)
J34

−
(

k

m
D−

34 + M34 − α− + α2 D−
34

)
J14

−
(

k

m
D+

34 + M34 − α− + α1 D+
34

)
J32,

X++ = M12 (J12 − J34)+
(

k

m
− α+

)
(J12 + J34)

+ 2βα− (eV − α−k)

λ2
12

(J14 + J32) ,

X−− = M34 (J12 − J34)−
(

k

m
+ α+

)
(J12 + J34)

+ 2βα− (eV + α−k)

λ2
34

(J14 + J32) ,

X+− = 2

λ12λ34

((
α2

(
e2V 2 − α2

−k2
) + α1β

2
)

J12

+ (
α1

(
e2V 2 − α2

−k2
) + α2β

2
)

J34

− 2βα− ((eV + α+k) J14 + (eV − α+k) J32)

)
,

(A.4)

and X−+ = 0 with M12 = α−
λ2

12
(eV +β−α−k)(eV −β−α−k)

and M34 = α−
λ2

34
(eV + β + α−k)(eV − β + α−k).
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